
Fall 2010/2011 

Memory Models, Instruction Operand Notation

 
Outline of the Lecture 
� Memory Models. 
� Instruction Operand Notation
� Data Transfer Instructions

Memory Models that can be used 
1. TINY MODEL (.MODEL 
� The model uses maximum of 64K bytes for Code and

2. SMALL MODEL (.MODEL SMALL):
� The model uses maximum of 64K bytes for Code and

Data <=64K). 
� This model is the most widely used

be used in this course. 
3. MEDIUM MODEL, (.MODEL MEDIUM): 
� The model uses maximum of 64K bytes for Data

(Code>64K and Data <=64K).
4. COMPACT MODEL, (.MODEL COMPACT): 
� The model uses maxim

(Code<=64K and Data >64K).
5. LARGE MODEL, (.MODEL LARGE): 
� Both Code and Data can exceed 64K bytes. However

exceed 64K bytes (Code>64K and Data >64K).
6. HUGE MODEL, (.MO DEL HUGE): 
� Both Code and Data can exceed 64K bytes. Additionally,

exceed 64K bytes (Code>64K and Data >64K).
7. FLAT MODEL, ( .MODEL FLAT
� Window NT Application

Attributes of Memory Models 

Microprocessors (0630371) 
Fall 2010/2011 – Lecture Notes # 9 

 
Instruction Operand Notation and Data Transfer Instructions

 

Instruction Operand Notation. 
Data Transfer Instructions. 

 
Memory Models 

 in assembly language are the following: 
MODEL (.MODEL TINY): 

The model uses maximum of 64K bytes for Code and Data. 
SMALL MODEL (.MODEL SMALL):  

The model uses maximum of 64K bytes for Code and 64K bytes for Data (Cod

This model is the most widely used memory model and is sufficient for all the programs to 

MEDIUM MODEL, (.MODEL MEDIUM):  
The model uses maximum of 64K bytes for Data and Code can exceed 64K bytes 
(Code>64K and Data <=64K). 

COMPACT MODEL, (.MODEL COMPACT):  
The model uses maximum of 64K bytes for Code and Data can exceed 64K bytes 
(Code<=64K and Data >64K). 

LARGE MODEL, (.MODEL LARGE):  
Both Code and Data can exceed 64K bytes. However no single data set (i.e. array) can 
exceed 64K bytes (Code>64K and Data >64K). 

DEL HUGE):  
Both Code and Data can exceed 64K bytes. Additionally, a single data set (i.e. array) can 
exceed 64K bytes (Code>64K and Data >64K). 

.MODEL FLAT ) 
NT Application 

Data Transfer Instructions  

64K bytes for Data (Code<=64K and 

l and is sufficient for all the programs to 

and Code can exceed 64K bytes 

Code and Data can exceed 64K bytes 

no single data set (i.e. array) can 

a single data set (i.e. array) can 

 



Example  
TITLE Add and Subtract (addsub.asm)
; This program adds and subtracts integers
.686
.MODEL flat, stdc
.STACK
INCLUDE Irvine32.inc
.code
main PROC

main ENDP
END main

� The .MODEL  is a directive that specifies the memory configuration for the assem
language program. For our purposes, the FLAT memory model will be used. 
� The .686 is a processor directive used before the .MODEL FLAT directive to provide 

access to the 32-bit instructions and registers available in the Pentium Processor. 
� The STDCALL  directive tells the assembler to use standard conventions for names and 

procedure calls. 
Instruction Operand Notation

TITLE Add and Subtract (addsub.asm) 
; This program adds and subtracts integers
.686 
.MODEL flat, stdcall 
.STACK 
INCLUDE Irvine32.inc 
.code 
main PROC 

mov eax, 60000h ; EAX = 60000h 
add eax, 80000h ; EAX = EAX + 80000h
sub eax, 20000h ; EAX = EAX - 20000h
exit 

main ENDP 
END main 

is a directive that specifies the memory configuration for the assem
language program. For our purposes, the FLAT memory model will be used. 

is a processor directive used before the .MODEL FLAT directive to provide 
bit instructions and registers available in the Pentium Processor. 
directive tells the assembler to use standard conventions for names and 

Instruction Operand Notation 

 
; This program adds and subtracts integers 

add eax, 80000h ; EAX = EAX + 80000h 
20000h 

is a directive that specifies the memory configuration for the assembly 
language program. For our purposes, the FLAT memory model will be used.  

is a processor directive used before the .MODEL FLAT directive to provide 
bit instructions and registers available in the Pentium Processor.  
directive tells the assembler to use standard conventions for names and 

 



Data Transfer Instructions 
MOV Instruction 
� Move source operand to destination, the syntax is  

mov destination, source 
� Source and destination operands can vary 

mov reg, reg 
mov mem, reg 
mov reg, mem 
mov mem, imm 
mov reg, imm 
mov r/m16, sreg 
mov sreg, r/m16 

Rules 
� Both operands must be of same size 
� No memory to memory moves 
� No immediate to segment moves 
� No segment to segment moves 
� Destination cannot be CS 

MOV Examples 
.DATA 
count BYTE 100 
bVal BYTE 20 
wVal WORD 2 
dVal DWORD 5 
.CODE 
mov bl, count ; bl = count = 100 
mov ax, wVal ; ax = wVal = 2 
mov count,al ; count = al = 2 
mov eax, dval ; eax = dval = 5 

; Assembler will not accept the following moves – why? 
mov ds, 45 ; immediate move to DS not permitted 
mov esi, wVal; size mismatch 
mov eip, dVal; EIP cannot be the destination 
mov 25, bVal; immediate value cannot be 

; destination 
mov bVal,count; memory-to-memory move not 

; permitted 


